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Two-dimensional flow at high subsonic speeds past 
wedges in channels with parallel walls 

By J. B. HELLIWELL 
Department of Mathematics, The Royal College of Science and Technology, Glasgow 

(Received 6 September 1957) 

SUMMARY 
Investigations are made of the plane flow of an inviscid 

isentropic gas at high subsonic and sonic speeds past a finite 
wedge of small angle set at zero incidence in a channel with parallel 
walls. Hodograph methods are applied to the determination of 
the stream function, which, under the usual transonic approxi- 
mation, is a solution of Tricomi’s equation. In 8 2 a brief summary 
is given of the derivation of the fundamental solution of this 
equation in terms of Bessel functions. 

Two models of the flow pattern are discussed. The model of 
Cole is examined in $ 3  with the sonic line from the shoulder 
extending completely across the channel at right angles to the wall. 
In  5 4 the Helliwell-Mackie model is taken in which there is a free 
stream breakaway at sonic velocity from the shoulder of the wedge 
and the velocity far downstream may be either uniformly subsonic 
or sonic. Values are obtained for the drag coefficient in both cases 
and a high degree of both qualitative and quantitative agreement 
is found. On the basis of the free streamline theory explicit 
formulae are given relating, in terms of the channel width and 
upstream Mach number, the drag of the wedge in the channel to 
that of the same wedge in the free stream. 

Attention is drawn in $ 5  to certain properties of plane jet 
flows that may be deduced from the investigation of the flow 
with free stream breakaway past a wedge in a channel. 

1. INTRODUCTION 
The two-dimensional steady flow of an inviscid isentropic gas at high 

subsonic and sonic speeds past a finite wedge profile in a free stream has 
been investigated by many workers, employing various methods based upon 
the hodograph transformation by which the resulting differential equation 
for the stream function ‘Y is made linear. A common procedure, which 
will be followed in the present paper, is to use the so-called transonic 
approximation in which this differential equation becomes the well-known 
Tricomi equation 
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where U = aC(l - u/(y  + 1)) and V =  a*u/(y + 1) are the Cartesian components 
of velocity, the axes being taken parallel and perpendicular to the uniform 
flow at infinity, a* is the velocity of the gas when the Mach number is 1 
and y is the adiabatic index of the gas. In this approximation V = 0 at 
infinity upstream of the wedge and u, v are small. Henceforth the suffix 1 
will refer to conditions at infinity upstream. Furthermore, it is known 
that Y is proportional to the y-coordinate. 

It should be remarked* that recent work by Vincenti, Wagoner & Fisher 
(1956) shows that even more accuracy may be expected from the transonic 
approximation if solutions of Tricomi’s equation 

a v  a 2 y ’  
-7@- + u - =  0 
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are used in which u is interpreted in a somewhat different manner from 
that in the present paper, and ‘F’ is the stream function Y multiplied by 
a certain other function of u. 

Guderley & Yoshihara (1950), Cole (1951) and Helliwell & Mackie 
(1957) have obtained solutions of Tricomi’s equation under different 
hypotheses regarding the flow pattern downstream of the shoulder of the 
wedge. In each model the flow, accelerating from zero velocity at the tip 
of the wedge, attains sonic velocity at the shoulder. The solution of 
Guderley & Yoshihara is of considerable complexity since it includes a 
determination of the flow field between the sonic line and the limiting 
characteristic of the Prandtl-Meyer expansion at the shoulder. Less 
difficult analysis is involved in Cole’s solution in which the supersonic 
region degenerates into a sonic line straight and normal to the direction 
of the flow far upstream ; the flow pattern is investigated upstream of this 
line. In  the work of Helliwell & Mackie the sonic line is specified as a 
free streamline starting from the shoulder and the velocity is subsonic or 
sonic throughout the entire field of flow. A comparison of these various 
models shows a close similarity in the pressure distribution over the wedge 
nose upstream of the shoulder and hence correspondingIy small variations 
in the estimate of the drag coefficient of the wedge. 

An extension of the approach of Guderley & Yoshihara to the situation 
when the wedge is placed symmetrically in a wind tunnel has been carried 
out recently by Marschner (1956). However, he only investigates the case 
of the choked tunnel. In  the present paper similar investigations are made 
of the flow past a wedge at zero incidence in a two-dimensional channel 
with parallel walls under more general conditions of downstream flow. 
In $ 3  the basic model of Cole is used with the sonic line extending from 
the shoulder of the wedge normally to the channel wall. In  $ 4  the 
Helliwell-Mackie model is taken with the sonic line appearing as a free 
streamline from the shoulder. Expressions are obtained for the drag 
coefficient in each case and the channel walls are found to produce similar 

* The author is indebted to a referee for drawing his attention to these results. 



Flow at high subsonic speeds past wedges in channels 397 

effects upon its value, as compared with that in a free stream, for both models 
of the flow. In the free streamline model, equation (25) taken in con- 
junction with figure 8 gives correction terms which yield explicitly, in terms 
of the upstream Mach number and the channel width, the relation between 
the drag of the wedge in the channel and of the same wedge in a free stream 
with the same Mach number. When using these results it should be ensured 
that the channel width has been taken sufficiently large for the flow far 
downstream not to become supersonic ; the limiting relationship between 
channel width and upstream Mach number for uniform sonic velocity 
downstream is shown in figure 6. 

Finally in $ 5  attention is drawn to a result concerning jet flows that 
may be deduced from the investigations of the flows with free streamlines 
past the wedge in a channel. 

2. FLOW PATTERNS IN A SUBSONIC STREAM 

In the subsequent analysis we shall be concerned with flow nowhere 
In  this section we summarize briefly the equations relating 

These relationships only 

The dimensionless velocity variables u and PI have already been defined. 
The polar angle 8 of the 

The local pressure coefficient is 

supersonic. 
the variables which define the flow patterns. 
hold, of course, within the limits of the transonic approximation. 

The Mach number M is given by 1 - M 2  = u. 
velocity is related to  v by v = ( y  + l)8. 
defined by 

where p is the pressure and p is the density. It is straightforward to show 
that, according to the linearized transonic theory, 

cp  = (P - P , ) / ( i P 1  w, 

cp = 2(u - u,)/(y + 1). (1 )  
The equation of continuity and the condition for irrotational flow are 
respectively 

which may be inverted to yield the hodograph equations 

uu, - vy = 0, 

uy, - xu = 0, x, +yu = 0. (2) 

uy + vz = 0, 

If x is eliminated these lead to the equation of Tricomi 

Yuu + UY w ,  = 0, 

r = 3u312 = #(1 - M2)3/2, 

in which u > 0 represents subsonic flow. If we set 

(3) 
then, on solving Tricomi’s equation by the method of separation of variables, 
simple solutions are obtained of the type 

y = r1/3e*av%9*1)3(hr), (4) 
where %?*l,3(Ar) i s  any linear combination of Bessel functions of the order 
indicated and h is any constant, real or imaginary. 
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3. MODEL 1. SONIC LINE NORMAL TO CHANNEL WALL 

In this section we employ the model of Cole for flow at near sonic 
velocity past a wedge profile. The basic feature of this model is that the 
sonic line from the shoulder is straight and normal to the flow at infinity 
upstream. It is pointed out by Cole in his original paper that, so far as the 
flow over the front portion of the wedge is concerned, it is a good approxi- 
mation to replace the actual shape of the sonic line in this way, and hence 
a good estimate should be obtained for the drag coefficient. At low subsonic 
Mach numbers the supersonic region is small and so the approximation 
is close to being correct ; for larger Mach numbers, whilst the actual sonic 
line is by no means straight away from the wedge, yet the upstream influence 
of the errors in the supersonic region introduced by the approximation is 
weaker. 

T I I 

D I C 
I 
I 
I 
f K I 

Figure 1. Model 1.  Physical plane. 

Consider then a wedge of semi-angle 6 placed symmetrically in,a channel 
of semi-width K as shown in figure 1. The x-axis is taken as the axis of 
symmetry and the y-axis passes through the tip of the wedge. Hence, 
we need only consider the flow in the upper half-plane y 0. The channel 
is supposed to be blocked by the sonic line which extends normally from the 
channel wall to the shoulder of the wedge. This is represented by BC. 
AOB is the dividing streamline Y = 0 on which at A,  the point at infinity 
upstream, the velocity is subsonic with Mach number MI,  at 0, the wedge 
tip, the velocity is zero and along the wedge face OB the flow accelerates 
to attain sonic velocity at B, the shoulder of the wedge. DC is the stream- 
line Y = k with associated y = K corresponding to the channel wall along 
which the flow accelerates steadily from its subsonic upstream velocity 
to sonic speed at C. Along the wedge face OB we also have n = no = ( y  -I- 1)6. 

The boundary value problem may now be established in the hodograph 
plane, as shown in figure 2. CD is the line y = K. AOB is the line y = 0. 
BC is the sonic line x = constant, from which it follows, since u = 0, that 
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x, = 0, whence using (2) we have y r  = 0. TWQ other lines of constant y 
are shown. Clearly there is a finite singularity at the point DA. 

The problem is now stated in terms of r and v. The condition along BC 
becomes r1’3yr = 0 when r = 0 for all 0 < v < vo which is automatically 
satisfied provided thaty, remains bounded at r = 0. The simple solutions (4) 
show that we must take y ,  = 0 at r = 0 as the condition to fit this requirement. 
Hence we have 

y = K ,  v = o ,  0 < r < rl ,  

y = o ,  v = o ,  y >i r1, 

y = 0, v = vo, r 2 0 ,  

y,  = 0, 0 < v < vo, r = 0. 

Figure 2. Model 1 .  Hodograph plane. 

The linearization principle, applied to the stagnation condition at the tip 0, 
leads to 

x = 0 ,  y = O ,  as r-+ a. 

Finally, taking the wedge to be of unit length, 

x g l  at v = v o ,  r = 0 .  

A solution of the problem is obtained by taking a combination of the 
simple solutions (4) in the form 

Differentiating under the sign of integration, we have 

Here f ( h )  is an arbitrary function of h that is to be determined so that (5) 
satisfies the first two boundary conditions, since it is immediately apparent 
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that the last two are satisfied automatically. Hencef(X) is given by 

= 0, r > rl- 

An application of the Hankel inversion theorem and a simple integration 
then yields the result that 

Inserting this in ( 5 ) ,  the solution of the problem becomes 

That this form has a singularity of the correct type at r = rl may be confirmed 
in the usual way. It may also be noted that (6) simplifies into Cole's solution 
for the wedge in the sonic free stream if KrtJ3 tends to a finite constant as 
rl -+ 0 so that the channel becomes infinitely wide as the upstream Mach 
number tends to unity. This behaviour of K is confirmed in a later result 
(equation (9)). 

After a little 
analysis we find that 

The x-coordinate is now obtained from equation (2). 

The unit additive constant in this expression arises from. the condition that 
the sonic line on which r = 0 is x = 1 when the wedge is taken to have unit 
length. 

In the subsequent work a series representation for the x-coordinate on 
the face of the wedge will be useful. T o  obtain this we set v = u0 in (7) 
and expand cosech Avo in partial fractions by 

1 (- 1)mAao 
Avo n=l  + (nn-)2 ' 

cosechhv, = - + 2  2 
After some manipulation and use of standard results concerning integrals 
involving Bessel functions, we ultimately derive the series 
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Because of the asymptotic behaviour of K,(z) for large z ,  the stagnation 
condition, x = 0 as r --f co, applied to the latter representation gives 

Kr;l3 = 2($)a3v0. (9) 
Writing rl in terms of MI through (3) and replacing vo by (y + 1)6, we thus 
have the result. 

{qY + 1 ) ) 1 / 3 ~  = 2[(1- M : ) { S ( ~  + 1))-2/31-2. 

This is the relation between the semi-channel width and the upstream 
Mach number that, on account of continuity of the flow, holds for the 
present model, if the channel is of such a width that sonic velocity is attained 
everywhere across a section through the wedge shoulder. 

The drag coefficient is defined in the customary way as 

c, = D / ( h  G), 
where D is the drag on the upper face of the wedge and, according to the 
linearized theory, is given by 

D = 6 C, dx, 

the integrations being taken over the length of the wedge. Introducing the 
relations (1) and (3) it can then be shown that 

The series representations (8) may now be substituted into (10) and after 
considerable algebra, in which (9) is used to replace K in terms of rI, an 
expression for C, in the form of an infinite series is obtained as 

where C(z) is the zeta function of Riemann. For values of the upstream 
Mach number Ml little different from unity, a series expansion in powers 
of (1 - M:) may be obtained for C, in which the leading terms are 

where Cg is the finite value of the drag coefficient in Cole's model for the 
wedge in the sonic free stream. As Ml decreases from unity, the value 
of C,  for a wedge in a channel diverges from the corresponding value of C, 
for an identical wedge in a free stream with the same upstream Mach number, 
but reference to equation (72) of Cole's paper shows that the difference is 
of the order (1 - M;)Y.  A specific comparison i s  shown graphically in 
figure 3, 
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4. MODEL 2. SONIC LINE A SECTION OF A FREE STREAMLINE 

We now turn to investigate the flow pattern past a wedge profile symmetri- 
cally placed in a channel, employing the model incorporating a free streamline 
proposed by Heiliwell & Mackie. For the wedge in a channel the following 
general properties of the flow are laid down. The dividing streamline Y! = 0 
is straight from infinity upstream, where the velocity is subsonic with 
Mach number M I ,  to the tip of the wedge where there is a stagnation point. 
The upper branch of Y = 0 then follows the upper face of the wedge, the 
gas accelerating to attain sonic velocity at the shoulder at which point the 

1.5 - 

1.0 - 

Free strc 
0.5 - 

I I I I I 
1.0 0.8 0.6 0.4 0.2 0 

[&a, +1)]*/3 

I 

1-M: 

, Figure 3. Model I .  Drag coefficient. 

streamline breaks away from the wedge, retaining sonic velocity until it 
again becomes parallel to the channel walls. Thereafter it remains straight, 
the velocity of the gas along it meantime decelerating from sonic speed 
to some high subsonic velocity with Mach number M ,  (> MI).  The 
critical case of a channel with uniform sonic velocity everywhere in the flow 
field far downstream is merely a special case of the above with M2 = 1. 
More generally, the model describes a flow pattern with uniform subsonic 
velocity upstream, a local sonic region in the neighbourhood of the shoulder 
of the wedge and ultimately a uniform subsonic velocity downstream in 
addition to the wake, regarding which certain information may be deduced. 
From a theoretical point of view there is the added advantage that throughout 
the whole flow field the velocity is nowhere supersonic and hence limit lines 
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cannot occur to render invalid the transformation back to the physical 
plane. 

The pattern described in the preceding paragraph is shown in figure 4. 
The semi-channel and semi-wake widths are K and H respectively. The 
upstream portion of the dividing streamline Y = 0 is taken as the line of 
the x-axis with origin at the tip of the wedge. The channel walls are thus 
the straight lines y = 5 K .  Because of symmetry only the flow in the upper 

Figure 4. Modet 2. Physical plane. 

I 

Figure 5 .  Model 2. Hodograph plane. 

half-plane y 3 0 need be considered. AOBCD, then, is the dividing 
streamline. At the point A far upstream the Mach number is MI with 
associated r = r , ;  at 0 the velocity is zero. Along OB, the wedge face, 
the component v = oo = (y + l)S, where S is the semi-angle of the wedge; 
the gas accelerates to sonic velocity at B and retains this speed along the 
section BC. At C the velocity is again parallel to the x-axis and along CD 

F.M. 2 c  
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the gas decelerates until at D far downstream the Mach number is M2 with 
associated r = r2 (< rl). FE is the upper channel wall along which the 
gas velocity varies from Mach number Ml at F to M2 at E. 

The boundary value problem is now set up in the hodograph plane which 
is shown in figure 5. It is recalled that, to the order of the transonic 
approximation, Y is proportional to y .  AOBCD is the line y = 0, EF is 
the line y = K, and two other lines of constant y are shown. Finite 
singularities occur at the two pairs of coincident points A F  and DE, corre- 
sponding to upstream and downstream conditions, respectively. The 
remaining boundary conditions, in terms of Y and ZI, are 

y = o ,  v = o ,  0 Q r < r2, 

y = K ,  v = O ,  r2 < r < rl, 

y = 0, v = 0, r > r1, 

y = 0, v = 210, r 2 0 ,  

y = O ,  O < v < v o ,  r = 0 .  
The stagnation condition at the tip of the wedge is, according to the transonic 
approximation, 

x=O,  y = O  a s r - + c o .  

For a wedge of unit length, we also have the further condition 

x = l ,  v = v 0  a t r = O .  

The solution of the present problem may be derived from a combination 
of the simple solutions (4) of the type 

Whereas this automatically satisfies the last two boundary conditions for 
any g(h), it only satisfies them all if g(h) is a solution of the equations 

= K,  
= 0, r > rl’ 

r2 < r < r l ,  

The function g(h) may be determined by an application of the Hankel 
inversion theorem and we obtain 

g(h) = K { ~ ~ ’ ~ J - ~ ~ ( A Y ~ )  - rf’3J-&r1)]. 

Hence the formal solution of the problem is 
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This has singularities at r = rl and Y = r ,  when v = 0. .That they are 
of the correct type may easily be seen by an investigation of the form of y 
in the neighbourhood of r = rl, r = r,. We also note that if we let r ,  -+ rl 
and K + 00 simultaneously, we derive the special case of the flow in a free 
stream. In  fact, by carrying through this limiting process ony inequation(l2) 
using the relation (14) between K, rl and r2, we find that we recover the 
solution for flow past a wedge of unit length in a free stream given by 
equation (3) of the paper of Helliwell & Mackie. 

The x-coordinate of the solution is next determined. A direct sub- 
stitution from (12) into (2) and the resulting integrations yield 

(13) 
The constant which appears as a result of the integrations may be shown 
to be zero as a consequence of the stagnation condition at the tip of the 
wedge. 

The wedge will be taken to be of unit length and we have therefore x = 1 
at the shoulder where v = vo as Y -+ co. Thus, from (13), we find 

On expanding the Bessel functions, setting hw, = t ,  and interchanging 
orders of integration and summation, it follows that 

This is simplified by the use of a well-known integral representation of the 
Riemann zeta function {(z), giving 

x { ( 3 ) 2 n  2VO - (‘>a”). 2vo (14) 

This equation determines the relationship between upstream and down- 
stream Mach numbers Ml and M,  for a wedge of unit length placed in a 
channel of semi-width K, where 

r1 = j ( 1  -M33/2, r ,  = $(1 -M33/? (15) 
Figure 6 shows this result graphically in the important and limiting case 
of a channel when the velocity is uniformly sonic downstream (r, = 0). 
For purposes of comparison the corresponding result (9) for the model 
of the previous section is also shown. 

In  the subsequent work series representations for the coordinates will 
be required. We shall obtain these by means of intermediate contour 

2 c 2  
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integral forms. First let us investigate t h e y  coordinate. 
the result (12) becomes 

Setting Avo = t ,  

dt. (16) tm sinh ?~ t (  1 - v/vo) 
'lI3(<) sinh r t  

There are three distinct cases of this integral to be discussed, depending 
upon the value of r. 

Figure 6. Upstream Mach number and critical channel width. 

For 0 \< r < r2 < rl, consider the contour integral 

where C is the contour in the complex v plane going from -ice to + i m p  
indented at the origin, and closed by the right-hand infinite semi-circle. 
The integrand has a branch point at the origin but is single-valued in the 
whole plane cut along the negative real axis. The contributions to W from 
the infinite semi-circle and origin indentation can be both shown to be 
zero by using the asymptotic and power series expansions of K2\3(~) and 
I1I3(z) in the respective calculations. If now we write W = Wl+ W,, 
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where Wl is the part of the integral along the imaginary axis from 0 to ico, 
and set v = tei*/,, v = te-M2 in Wl and W,, respectively, we find after some 
manipulation that 

Since the poles of the integrand of W occur at the integer values of v, the 
residue theorem of Cauchy applied to 9 W  will yield a series form for y. 
We obtain 

y = 9 W .  

In  the case when r > y1 > r,, considerations similar to the above 
may be used to show that 

where C is the same contour as before. 
applied to this expression gives 

The Cauchy residue theorem 

(18) 
Over the range r2 < r < rl, the two forms of y already obtained suggest 

that we consider 

eivn(l-v/v,) 
X dv, sin VT 

with C the contour described previously. Once again, the contribution 
from the infinite semi-circle is zero, but we now find that the imaginary 
part of the contribution from the origin indentation is 

- K(1- v/vo). 

y = 4W'+K(1-v/vo), 
Hence, proceeding as before, we discover that 

and an application of the residue theorem of Cauchy yields 

The required series representations for y are given by equations (17), 
The discontinuities when v # 0 at r = rl, r = r2 are only (18), (19). 
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apparent; continuity may be shown to exist at these points by use of a 
result concerning Bessel functions (ErdClyi 1953) and the Fourier series 
representation 

v 2 nrv 1 - - =  2 -sin-, v # O .  
Vo n = l  nr Vo 

Of course, the value of y is still undefined at r = rl, r = r2 when v = 0. 
Series representations for x may now be obtained by the use of 

equations (2). The constants of integration are determined by the 
stagnation condition at the tip of the wedge and by the necessary continuity 
of the x-coordinate everywhere. The three forms corresponding to 
equations (17), (18) and (19) are the following. For the range 0 < r  < r2 < r l ,  

for r > rl > r2, 

and for the range r2 < r < rl, 

We are now in a position to calculate the drag coefficient, C,, which, 
as indicated in the previous section, is given to the order of the transonic 
approximation by equation (10). The evaluation is quite straightforward. 
The series representations (20), (21) and (22), with v = vo, are inserted into 
the infinite integral and orders of summation and integration are 
interchanged. The resulting integrals involving Bessel functions are all 
standard types and after their evaluation a little algebra leads to the 
expression, 

’ 

2( $)2/385/3(rl/vo)2/3 
cD = PKa2{ ( 2)2 - ( 2)2} - ( y  + f)1/3 

For a wedge of unit length, we express K i n  terms of rl and r2 by equation (14) 
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and thereby obtain 

( Y + 1 ) 1 1 3 ~ D  aw3 = -2  (2)2'3+ 
.l..r(;)3-4i3{(3rl/2.0)2 - (3r , /2o0)~)  

f a  
I 

2 [( - l)m+1/n!]3-%I'(n - 4 ) ( Z ' ~ - l / ~  - 1 )@n - 6){(3~1/2~0)~~-(3r,/2~0)~~) 
7L=l 

This may be written in terms of the upstream and downstream Mach 
numbers Ml and M,. For flow sufficiently neqr sonic this may be expanded 
as a Taylor series in powers of ( 1  - Mf) and ( 1  - M;).  The leading terms 
of such an expansion are 

(24) 
26 

Y + l  
CD = C;*- - ( l - M f ) i O { ( l - M f ) 3 ,  ( l -Mg)3] ,  

where C;' is the finite value of the drag coefficient of this model for the flow 
past the wedge in a sonic free stream. The result (24) should be compared 

I I I I I z 

1.0 0.8 0.6 0.4 0.2 0 
I-M: 
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Figure 7. Model 2. Drag coefficient (critical channel). 

with that for the previous model as given in equation (11). The special 
case of the drag coefficient for a wedge in a critical channel with variable 
subsonic upstream velocity and sonic velocity along the entire free streamline 
and uniformly far downstream is shown in figure 7. This should be compared 
with figure 3 for the corresponding case of the previous section. The effect 
of the channel walls is seen to be very similar for the two models of the flow. 

A more useful form for the drag coefficient in the general case is, however, 
obtained if the asymptotic expansion of equation (23) is taken for large K. 
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The drag coefficient is then written as a series expansion in ascending 
powers of K-l where the relation (14) has been previously used to express r2 
in terms of K and rl. After considerable algebra we obtain an expansion 
of the type 

where K = K(1- M33/[S(y + l)]”3. The coefficients a, b, c, ... are extremely 
complicated and inelegant functions of Ml which increase slowly as M ,  
decreases from unity. The first two are shown graphically in figure 8. 
‘Dfree and CDchannel denote the drag coefficient of the same wedge in a 
free stream and channel, respectively, with the same upstream gas velocity. 
The expression (25) is thus essentially one yielding correction terms to be 

Figure 8. Model 2. Drag correction coefficients. 

applied to the drag coefficient in the channel in order to obtain the corre- 
sponding value for the drag in the free stream. It is remarked that the 
correction to be applied is, in general, small within the range of validity 
of the present theory which does not apply unless the channel is wider 
than the length of the wedge by a factor of the order of 10. That this is 
so may be noted from the fact that, for a given value of M,, the value of K 
yielded by figure 6 is that corresponding to uniform sonic velocity across 
the channel far downstream. In  general, however, the velocity will be 
subsonic and considerations of continuity of the flow show that the value 
of K thus determined is a lower bound. 
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The location of the end of the sonic line is the point C in figure 4. Here 
the wake becomes parallel to the channel walls. The x-coordinate of this 
point is obtained by setting r = 0 and z1 = 0 in (20) and has the value 

This is finite for all rl ,  r2 # 0 so that the wake becomes parallel at a finite 
distance downstream of the wedge, as was laid down in the flow pattern 
for this model. It is of considerable interest to note that this result remains 
true when r2 = 0, so that uniformly sonic conditions in a parallel flow 
would be attained at a finite distance downstream in the case when the 
channel width is critical. 

Finally, the semi-width of the wake can be calculated. From figure 4, 
for a wedge of unit length, we have 

H-6 = rc dy = j:Odx, 
fJB 

where 8 is here the slope of the sonic line. Integration by parts leads to 
PV. 

(y+  l)H = J " x dv, 
0 

where x is to be taken along BC. The appropriate series representation 
of x to be inserted in this integral is the limiting form of (20) as r + O .  
Thus, after the integration is performed, we find 

which by means of equations (15) may be written 

It should be recalled that this value is not independent of 6, as appears at 
first sight, since K, Ml and M,, are interrelated with 6 through equations (14) 
and (15). 

5. JET FLOWS 

It is apparent that if we redraw figure 4 with FE as axis of symmetry 
and take the flow region bounded by the dividing streamline AOBCD and 
its image A'O'B'C'D' in FE we obtain figure 9. The physical problem 
portrayed is then that of a two-dimensional jet flowing from a convergent 
nozzle through a region of constant pressure into a duct with parallel walls. 
Far upstream in the channel of semi-width K,  the Mach number of the 
flow is Ml. At the orifice BB' sonic velocity is attained at the boundary, 
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and the gas issues as a jet with free boundaries BC, B’C’ along which sonic 
velocity is maintained. At CC‘ the gas enters a duct with straight, parallel 
walls in which the flow decelerates to a subsonic velocity with Mach number 
M2 (> MI). 

F 

K 

A’ 

t * R  

_ _ _  _-- --- - C‘ L D’ 
>7------ 

0 

1.0 0.8 0.6 0.4 0.2 0 
1-My 

[a( y + 1)12/3 

Figure 10. Downstream position of parallel sonic jet. 

The case when M2 = 1 is of particular interest since then the duct 
may be dispensed with and we have the problem of a two-dimensional jet 
flowing through a convergent nozzle into a region of constant pressure 
which has the value associated with the sonicvelocity. The flow in the jet 
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has a uniform sonic velocity far downstream, where the ultimate semi-width 
of the jet is J ( = K- H). The results of the previous section in the special 
case when r2 = 0 are thus appropriate for the solution of this problem. 
We take F E  as x-axis and 00’ as y-axis. Then, as has already been 
remarked, the jet becomes parallel at the point C located a finite distance 
downstream of the orifice. For a nozzle of unit length the value of xc, 
the x-coordinate of C, is given by equation (26) with r, = 0. We recall 
that the relationship between the channel semi-width K and upstream 
mach number MI is shown graphically in figure 6. 
with MI is shown in figure 10. Finally, it follows from equation (27) that 
the value of J, the semi-width of the jet, is given by 

The variation of xc . 

J (1 - M,2)2 - -  
K - l -  2(y+1) a 

As remarked at the conclusion of the previous section, it should be noted 
that this result is not independent of 6 since K and MI are interrelated 
with this angle. 
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